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Abstract
A discussion of discrete Wigner functions in phase space related to mutually
unbiased bases is presented. This approach requires mathematical assumptions,
which limits it to systems with density matrices defined on complex Hilbert
spaces of dimension pn where p is a prime number. With this limitation, it
is possible to define a phase space and Wigner functions in close analogy to
the continuous case. That is, we use a phase space that is a direct sum of n
two-dimensional vector spaces each containing p2 points. This is in contrast to
the more usual choice of a two-dimensional phase space containing p2n points.
A useful aspect of this approach is that we can relate complete separability
of density matrices and their Wigner functions in a natural way. We discuss
this in detail for bipartite systems and present the generalization to arbitrary
numbers of subsystems when p is odd. Special attention is required for two
qubits (p = 2) and our technique fails to establish the separability property
for more than two qubits. Finally, we give a brief discussion of Hamiltonian
dynamics in the language developed in the paper.

PACS numbers: 03.65.−a, 03.65.Ca, 03.65.Fd

1. Introduction

In a study of thermal equilibrium of quantum systems [26], Wigner introduced the famous
function that now bears his name. There is an extensive literature on the Wigner function
for continuous variables [6, 9]. The literature on discrete Wigner functions is less extensive,
but the importance of discrete phase space in quantum information has revived interest in the
subject [8, 17, 24]. In particular, the paper by Gibbons et al contains a useful list of references.

In this paper, we present a discussion of discrete Wigner functions in phase spaces related
to mutually unbiased bases (MUB). Our approach differs from the geometric method of
Wootters in being more operational and closer to the methodology of the continuous case
[8, 28], but our approach also requires mathematical assumptions, which limits it to systems
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with density matrices defined on complex Hilbert spaces of dimension pn where p is a prime
number. With this limitation, it is possible to define phase space and Wigner functions which
mimic the continuous case. There does not seem to be any simple way to do this for other
dimensions, see for example [13, 23]. A useful aspect of this approach is that we can relate
the separability of density matrices and their Wigner functions. We discuss this in detail for
bipartite systems and present the generalization to arbitrary numbers of subsystems. As an
application of our analysis, we show that for p an odd prime, with a particular choice of ‘phase’
parameters, Hermitian operators used in [8] for n- and p-level systems are tensor products of
operators for the individual p-level subsystems.

The paper is organized as follows. We first briefly review the definition and properties of
the Wigner function for continuous variables and list the most important properties that are
retained in the discrete case. Our discussion of the discrete Wigner function makes extensive
use of generalized spin matrices which are defined in section 3 for a single particle. In
order to determine a suitable choice of phase space, we are led to consider mutually unbiased
bases, and this is done in sections 4 and 6, and further discussed in appendix B. The discrete
Wigner function for a single particle is then defined and its properties discussed in section 5.
The generalization of our discussion to more than one particle begins with section 6. The
transition to the general case is aided by using the geometry of discrete phase space, which
is summarized in appendix E. In section 7.4 we generalize the Wigner function to dimension
p2, and in section 8 to pn.

The problem of separability when p = 2 requires special treatment, and in section 7
the case of two qubits is analysed. The generalization to more than two qubits appears to
be impossible by the present technique, this is discussed in section 8. Finally, in section 9 a
brief discussion of Hamiltonian dynamics is presented and a simple example using MUB is
given. Various background and technical issues are discussed in the appendices, including the
positivity of the density matrix.

2. Wigner function for a particle moving in one dimension

Let ρ be the density matrix for a particle moving in one dimension, and let Q and P be
the position and momentum operators for the particle. We set h̄ = 1 so the Heisenberg
commutation relation is [Q,P ] = i1. It is convenient to introduce the Wigner function as the
Fourier transform of its characteristic function χ, defined by

χρ(u, v) = Tr[ρD(u, v)] (1)

where D is the unitary translation operator

D(u, v) = e−i(uP−vQ) = e−iuP eivQ eiuv/2. (2)

These operators form a projective group called the Heisenberg–Weyl group [25]. It is easy to
show that

D(u, v)D(a, b)D(u, v)† = ei(a,b)◦(u,v)D(a, b), (3)

where the phase factor is the symplectic product of the operator ‘indices’,

(a, b) ◦ (u, v) = bu − av. (4)

The Wigner function is defined by

Wρ(q, p) = 1

(2π)2

∫ ∞

−∞
du

∫ ∞

−∞
dv χρ(u, v) e−i(qv−pu)

= 1

(2π)2

∫ ∞

−∞
du

∫ ∞

−∞
dv Tr[ρD(u, v)] e−i(qv−pu). (5)
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To see that this agrees with the standard definition, let us compute the trace in the last
equation using a complete set of eigenvectors of Q,

Wρ(q, p) = 1

(2π)2

∫
du

∫
dv

∫
dx〈x|ρ|x + u〉 eivx eiuv/2 e−i(qv−pu)

where equation (2) was used with

e−iuP |x〉 = |x + u〉.
Doing the v and x integrals gives

Wρ(q, p) = 1

2π

∫
du

∫
dx〈x|ρ|x + u〉δ

(
x +

u

2
− q
)

eipu

= 1

2π

∫
du〈q − u/2|ρ|q + u/2〉 eipu. (6)

The definition of the operators D(u, v) is not unique. There is some freedom in the choice of
phase, referred to as gauge freedom in [25], p 181. While the choice used here is the standard
one, the issue is not so simple for the discrete case.

Many of the standard properties of the Wigner function can be deduced readily from
equation (5):

(1) The mapping ρ → Wρ is convex linear.
(2) Wρ is normalized, i.e.,∫

dq

∫
dp Wρ(q, p) = 1

which follows from χρ(0, 0) = Trρ = 1.
(3) W is real since χ∗

ρ (u, v) = χρ(−u,−v).
(4) If ρ ′ = D(a, b)†ρD(a, b) then

Wρ ′(q, p) = 1

(2π)2

∫
du

∫
dv Tr[ρD(a, b)D(u, v)D(a, b)†] e−i(qv−pu)

= 1

(2π)2

∫
du

∫
dv Tr[ρD(u, v) ei(ub−va)] e−i(qv−pu)

= Wρ(q + a, p + b).

(5) The marginal distributions are probability densities,∫ ∞

−∞
dq Wρ(q, p) = 〈p|ρ|p〉∫ ∞

−∞
dp Wρ(q, p) = 〈q|ρ|q〉.

More generally, if we integrate along a line in phase space we get a probability density∫ ∞

−∞
dq

∫ ∞

−∞
dp Wρ(q, p)δ(q cos θ + p sin θ − q0〉 = 〈q0; θ |ρ|q0; θ〉,

where |q0; θ〉 is the eigenvector of Qθ = Q cos θ + P sin θ with eigenvalue q0.

Finally, to show that the Wigner function is equivalent to the density matrix, we write
the density matrix in terms of the Wigner function. This is done easily by taking the inverse
Fourier transform of equation (6),

〈q|ρ|q ′〉 =
∫ ∞

−∞
Wρ

(
q + q ′

2
, p

)
e−ip(q−q ′) dp.
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It follows from this equation that

Tr[ρ1ρ2] = 2π

∫ ∞

−∞

∫ ∞

−∞
dp dq Wρ1(q, p)Wρ2(q, p),

which is just Plancheral’s theorem.
Proving that a given function W(q, p) corresponds to a density matrix comes down

proving that the inverse formula leads to a ρ which is positive (cf [16]).
Finally, we note that we can define a Wigner function, WA, for any operator A for which

equation (5) is defined.

3. Generalized spin matrices

We briefly review some facts about the generalized spin matrices which are of interest here and
introduce some notation that will be used throughout the paper. We shall use letters j, k, s, t to
denote elements of Zd = {0, 1, . . . , d − 1}, the integers modulo d. Let Hd be a d-dimensional
complex Hilbert space, and let {|k〉, k ∈ Zd} be an orthonormal basis of Hd . Let Md be the
vector space of complex d ×d matrices that act on Hd . This space is a d2-dimensional Hilbert
space with respect to the Frobenius or trace inner product

〈A,B〉 = Tr(A†B) (7)

for A,B ∈ Md . The set of matrices {|j 〉〈k|, j, k ∈ Zd} is an orthonormal basis of Md . Let
η = ηd = ei2π/d , and define the generalized spin matrices as the set of unitary matrices

Sj,k =
d−1∑
m=0

ηjm|m〉〈m + k| (8)

where index addition is to be understood to be modulo d. This set of d2 matrices, including
the identity matrix I = S0,0, forms an orthogonal basis of Md [19].

It is not difficult to show that

S
†
j,k = ηjkS−j,−k (9)

Sj,kSs,t = ηksSj+s,k+t . (10)

From equation (10) it follows that Sj,k and Ss,t commute if and only if the symplectic product
(j, k) ◦ (s, t) = 0, where

(j, k) ◦ (s, t) ≡ ks − j t mod d (11)

which should be compared with equation (4). We will also need the relation

Sm
j,k = ηm(m−1)jk/2Smj,mk. (12)

The spin matrices can be generated from two matrices: S1,0 which is diagonal, and S0,1

which is real and translates each state to the next lowest one modulo d. One can check that
Sj,k = S

j

1,0S
k
0,1. These spin matrices can be viewed as translation operators in a manner similar

to the D(u, v) operators for the single particle discussed in section 2. The analogue to property
4 is

Ss,tS
m
j,kS

†
s,t = ηm(tj−sk)Sm

j,k = ηm(s,t)◦(j,k)Sm
j,k. (13)

Since the matrices
{

1√
d
Sj,k

}
form an orthonormal basis on the d2-dimensional Hilbert space

Md, they satisfy the completeness relation

1

d

d−1∑
j,k=0

Sj,kTr
(
S
†
j,kA

) = A, (14)
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where A ∈ Md . This set of spin matrices has appeared repeatedly in the mathematics and
physics literature, for example [4, 5, 11, 19, 21, 27] among others, and is often also referred
to as the (discrete) Heisenberg–Weyl group.

Finally, we define a set of orthogonal one-dimensional projection operators that we will
need. Let p be a prime number. For (j, k) �= (0, 0) and 0 � r � p − 1

Pj,k(r) = 1

p

p−1∑
m=0

(αp(j, k)ηrSj,k)
m (15)

where α2(1, 1) = −eiπ/2 and αp(j, k) = 1 otherwise is a set of orthogonal one-dimensional
projection operators [19]. If we make this definition for d not prime, we find that we generate
rank 1 projection operators which are not orthogonal. The reason that the factor α2 appears
in the p = 2 case is that for p an odd prime S

p

j,k = S0,0, however, (α2(1, 1)S1,1)
2 = S0,0 since

S2
1,1 = −S0,0.

4. Mutually unbiased bases I

We review the theory of mutually unbiased bases (MUB) for a particle whose state vectors
lie in a p-dimensional complex Hilbert space Hp, where p is a prime. It can be shown that
there exist p + 1 orthonormal bases (ONB) in this space which are MUB [11, 20, 29]; that
is, if ψ and φ are state vectors that belong to a pair of ONB that are mutually unbiased, then
|〈φ|ψ〉| = 1/

√
p. The simplest example of mutually unbiased bases occurs for p = 2, for

which the bases consist of the eigenvectors of the three Pauli matrices {σx, σy, σz}.
There is a nice way to characterize the MUB using commuting classes of the generalized

spin matrices [1]. This leads to a natural way to introduce discrete phase space, and, in
turn, to a definition of a Wigner function. We denote the two-dimensional vector space with
components in Zp by V2(p), and use the letters u and v to denote vectors in this space. This
vector space contains p2 distinct points, and it is convenient to index the p2 spin matrices
using V2(p),

v = (v0, v1) → Sv = Sv0,v1 . (16)

With this notation equation (13) becomes

SuSvS
†
u = ηu◦vSv. (17)

It follows from this that two spin matrices commute if and only if the symplectic inner
product of their index vectors vanishes. Therefore, the problem of finding commuting sets of
operators is transformed into finding solutions to the equation u ◦ v = 0 for vectors in the
two-dimensional vector space V2(p). The solutions are easy to find; the p + 1 index vectors
ua, a ∈ Ip = {0, 1, . . . , p} partition the spin matrices into p + 1 sets defined by

Ca = {bua = b(1, a), b ∈ Zp} → Ma = {Sb
ua

, b ∈ Zp

}
a < p

Cp = {bup = b(0, 1), b ∈ Zp} → Mp = {Sb
up

, b ∈ Zp

}
.

(18)

(Note that in [20] Cp was denoted by C∞).
Equation (18) relates each vector in V2(p) to commuting sets of unitary matrices such

that Ma ∩ Mb = {S0,0} for a �= b. This follows from the fact that in V2(p) two non-zero
vectors with vanishing symplectic product must be collinear. The state vectors in each basis
are the eigenvectors of the associated set of unitary matrices in equation (18). The projection
operators for these vectors are defined in equation (15) and can be found in [1].

V2(p) will be used as the phase space for a single system with Hilbert space Hp, and
vectors in V2(p) will be used as indices for the characteristic function and for the Wigner
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function. The ‘horizontal’ and ‘vertical’ axes of V2(p) are associated with the spin matrices
Su0 and Sup

, respectively. In general, a vector (or point) (j, k) in V2(p) corresponds to Sj,k .
The projectors generated by Su0 are associated with the basis {|j 〉, j ∈ Zp}, and the projectors
generated by Sup

are associated with the basis
{|k) = (1/

√
p)
∑p−1

j=0 ηkj |j 〉, k ∈ Zp

}
. The

latter states are often referred to as the phase states [23, 24, 27]. The Hermitian operators
J = ∑p−1

j=0 j |j 〉〈j | with eigenstates {|j 〉} and � = ∑p−1
k=0 k|k)(k| with eigenstates {|k)} are

said to be conjugate observables, since these states are Fourier transforms of one another. This
is in analogy with the operators Q and P of section 2 although the commutation relation of J

and � is not proportional to the identity operator, and is, therefore, state dependent.
The fact that the sets Ca correspond to a set of MUB can be seen by computing the

projection operators for the sets, and showing that [20]∑
r∈Zp

Pua
(r) = S0,0 (19)

Tr
[
Pua

(r)Pua
(s)
] = δ(r, s) (20)

Tr
[
Pua

(r)Pub
(s)
] = 1

p
for a �= b. (21)

In particular, the proof of equation (21) depends on the orthogonality of the spin matrices and
the fact that Tr(Sj,k) = 0 for all the spin matrices except the identity. This set of MUB is
complete in the sense that there are p + 1 ONB in the set, the maximum number possible [1].

5. The discrete Wigner function for a single particle

5.1. The Wigner function

The discrete Wigner function of interest here was introduced by Wootters in [28]. Following
Wootters we wish to define the discrete analogue of the Wigner function such that properties
1–5 of section 2 are preserved. Our approach differs by emphasizing the role of the spin
matrices.

Let p be a prime number, and ρ ∈ Mp be a density matrix describing the state of a system
on the Hilbert space Hp. Define the characteristic function over V2(p)

χρ(mua) = χ(mua) = Tr
[
ρ
(
αp(ua)Sua

)m]
, (22)

where αp(u) is defined in equation (15). The properties of χ that we shall need are

χ(0) = 1 (23)
χ(mua)

∗ = χ(−mua). (24)

This last result follows from the fact that
(
Sm

u

)† = S−m
u , since Su is unitary.

Let v = (v0, v1) and u = (u0, u1) be vectors in V2(p). Then using equation (11)
the discrete Wigner function is defined as the discrete symplectic Fourier transform of the
characteristic function:

Wρ(v) = W(v) = 1

p2

∑
u∈V2(p)

ηv◦uχ(u)

= 1

p2

(
χ(0) +

p∑
a=0

p−1∑
m=1

ηv◦muaχ(mua)

)
. (25)

The sum over m excludes the m = 0 term, which gives rise to the first term in brackets. The
equality of these two expressions follows from the fact that the vectors {mua, a ∈ Ip,m ∈
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Figure 1. The vectors ua in V2(3).

Z∗
p} ∪ {(0, 0)} = V2(p), where Z∗

p = Zp − {0}, that is, these vectors partition the space into
distinct lines through the origin. This fact illustrates the role of the geometry of V2(p), see
appendix E and figure 1.

If we substitute equation (22) into (25) and use (15), the Wigner function can also be
written as

W(v) = 1

p

(
−1 +

p∑
a=0

Tr
[
ρPua

(v ◦ ua)
])

(26)

where
{
pr(r|a, ρ) = Tr

[
ρPua

(r)
]
, r ∈ Zp

}
is the probability distribution that can be estimated

from one of the p + 1 experiments determined by the set of MUB [20]. The sum over a gives
a complete set of measurements for determining the Wigner function or, equivalently, as we
shall see, the density matrix. This form of W shows that it is real and that it may be negative.

Equation (26) can be rewritten as

W(v) = Tr[ρA(v)]

A(v) = 1

p

(
p∑

a=0

Pua
(v ◦ ua) − S0,0

)
.

(27)

The set of Hermitian operators {A(v), v ∈ V2(p
2)} was used by Wootters in [8] to define the

Wigner function and is an orthogonal basis of Mp. To verify this, one uses the MUB properties
from equation (21) and computes as in [8]

Tr[A(u)A(v)] = 1

p2

[
p − 2(p + 1) +

∑
a

∑
b

Tr
[
Pua

(u ◦ ua)Pub
(v ◦ ub)

]]
.

Regardless of u and v each term in the double sum equals 1/p when a �= b. If a = b and
u = v, each of the resulting p + 1 terms equals 1. If a = b and u �= v, then the trace equals
zero except for the case when u − v = mua so that u ◦ ua = v ◦ ua and the trace equals 1.
Collecting terms gives

Tr[A(u)A(v))] = 1

p
δ(u, v). (28)

Note, by the way, that one can use the orthogonality to express the identity as

I =
∑

u

A(u). (29)

In the preceding discussion, we have written the Wigner function and the characteristic
function. In fact, for a given density matrix and a complete set of MUB, a class of Wigner
and characteristic functions can be defined. For example, we can multiply the characteristic
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function in equation (22) by an appropriate phase factor and get a new characteristic function

χρ(mua) → χρ,ra
(mua) = ηmraχρ(mua),

where ra ∈ Zp. Under this transformation

Wρ(v) → Wρ,r(v) = 1

p

(
−1 +

p∑
a=0

Tr
[
ρPua

(v ◦ ua + ra)
])

,

where r = (r0, . . . , rp). This approach provides an operational way of defining the class of
Wigner functions described in [8] and in the recent work of [7].

Before showing that the definition (25) has the desired properties, we present three
examples.

5.2. Examples

5.2.1. Qubits (p = 2). Using equation (8), the spin matrices may be shown to be equivalent
to the Pauli matrices:(

S0,0 S0,1

S1,0 S1,1

)
=
(

σ0 σx

σz iσy

)
,

where σ0 is the 2 × 2 identity. The classes of MUB are generated by

C0 = {b(1, 0)} → {σ0, σz}
C1 = {b(1, 1)} → {σ0, iσy}
C2 = {b(0, 1)} → {σ0, σx}

where b ∈ Z2. The most general density matrix may be written as

ρ = 1

2

σ0 +
∑

j

mjσj


where (mx,my,mz) is a vector with real components and length less than or equal to 1. In
this case

χ(u0) = mz, χ(u1) = my, χ(u2) = mx.

We have included the factor α2(u) so that χ is real. For p = 2 we have η = −1, and for
v = (v0, v1) ∈ V2(2)

W(v) = 1
4

(
1 + mzη

v1 + myη
(v1−v0) + mxη

−v0
)
.

It is now easy to see that summing over a horizontal line gives
1∑

v0=0

W(v) = 1

2
(1 + (−1)v1mz) = Tr[ρPu0(v1)],

Pu0(0) = 1

2
(σ0 + σz), Pu0(1) = 1

2
(σ0 − σz),

where Pu0(0) is the projection operator for the state polarized along the positive z-axis, and
Pu0(1) is the projection for the state polarized along the negative z-axis. A similar result holds
for the sum over a vertical line, that is, a sum over v1 and the x-axis. For s ∈ Z2,∑

v

W(v)δ(v ◦ u2 − s, 0) = Tr
[
ρPu1(s)

]
= 1

2
(1 + (−1)smy)

which corresponds to summing along the line {b(1, 1), b ∈ Z2}. Finally, for this case, the
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Hermitian matrices defined in equation (27) are

A(v) = 1
4

(
σ0 + σzη

v1 + σyη
(v1−v0) + σxη

−v0
)
.

It is well-known that for a single particle W(v) can serve as a hidden variable probability
distribution if it is non-negative. This is because, as we shall see below, the measurement of
an arbitrary observable O is given by

Tr(ρO) = p
∑

v∈V2(p)

W(v)WO(v),

where WO(v) is the Wigner function defined with ρ replaced by O in equation (22). Therefore,
if the Wigner function is non-negative we can construct a complete hidden variable theory of
a single qubit consistent with quantum mechanics. However, there appear to be cases where
this does not work, for our present example if m = (1, 1, 1)/

√
3, then W(0, 0) < 0 [8], see

however [3] where it is shown that a hidden variable theory can always be constructed for a
single spin. We also note that since this m corresponds to a pure state there are bases in which
W(v) � 0. The positivity of the Wigner function is therefore sufficient but not necessary for
the existence of a hidden variable theory. For a discussion of the positivity of the Wigner
function see [7].

5.2.2. A pure state in Hp (p > 2). Let ρ = Pub
(r), then for a ∈ Ip

χ(mua) = 1

p

p−1∑
k=0

η−kr Tr
(
Sm

ua

(
S†

ub

)k)
= 1

p

p−1∑
k=0

η−krpδ(a, b)δ(m, k)

= δ(a, b)η−rm.

Therefore,

W(v) = 1

p2

(
1 +

p−1∑
m=1

η−m(r+ub1v0−ub0v1)

)

= 1

p
δ(r + ub ◦ v, 0),

so that W(v) vanishes except at points along a line in V2(p). In particular for the case
b = p,W(v) vanishes everywhere except along the vertical line v0 = constant, and for
b = 0,W(v) is constant along the horizontal line v1 = constant and vanishes everywhere else.

Given an arbitrary pure state, we can always find a MUB that contains this state as one
of the basis vectors. This shows that there is always a MUB for which a pure state has a
non-negative Wigner function. On the other hand if the pure state is not chosen as one of the
MUB vectors the result is more complicated as will be seen in example 4 below.

5.2.3. Completely random state. The density matrix for the completely random state is
ρ = (1/p)1p, which gives W(v) = 1/p2, that is, W(v) is constant.

5.2.4. The operator O = |j 〉〈k|. As stated above, we can define a Wigner function for
operators other than density matrices. We give an example here which we shall use later. For
the case that p is an odd prime, let |j 〉 and |k〉 be vectors in the standard basis and let

O = |j 〉〈k|.
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Figure 2. The Wigner function for p = 3 for the pure state |ψ〉 = 1√
2
(|1〉 + |2〉).

Then for a < p

χj,k(mua) = Tr
[|j 〉〈k|(Sua

)m]
,

and, for reasons that are explained in section 7, we introduce a phase factor when a = p

χj,k(mup) = Tr
[|j 〉〈k|(η−2−1

Sup

)m]
,

where −2−1 is taken as (p − 1)/2 since in the exponent we can compute mod p. Using
equations (8) and (12 ), we find

χj,k (mua) = ηmk+a(m(m−1)/2)δ(j,ma + k),

χj,k(mup) = η2−1(k−j)δ(j,m + k).

Working through the details gives

W|j〉〈k|(v) = 1

p
η(v0+2−1)(k−j)δ(0, v1 + 2−1(j + k)), (30)

where v = (v0, v1). Note that if k = j, |j 〉〈j | is a density and W|j〉〈j | is a special case of
example 2 above. For j �= k, we get

WO(v)∗ = WO†(v).

Now suppose that |ψ〉 =∑p−1
j=0 cj |j 〉, then

W|ψ〉〈ψ |(v) = 1

p

p−1∑
r=0

η(v0+2−1)rc−v1−2−1rc
∗
−v1+2−1r .

As stated above this is a more complicated form than we found for the case |ψ〉〈ψ | = Pb(r).
For the case p = 3 we illustrate this in figure 2 for the case |ψ〉 = 1√

2
(|1〉 + |2〉).

5.3. Properties of the discrete Wigner function

We now examine whether the definition (25) or, equivalently, (26) satisfies the criteria that we
set out in part 1:

(1) The mapping ρ → Wρ is linear on Md and convex linear on the density matrices.
(2) W(v) is normalized since

p−1∑
v0v1=0

W(v) = 1

p2

(
p2 +

p∑
a=0

p−1∑
m=1

χ(mua)p
2δ(m, 0)

)
= 1.
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(3) The reality of W follows immediately from equation (26).
The first three results also follow directly from equations (27) and (29).
(4) For w ∈ V2(p), if ρ ′ = S†

wρSw then using equation (17)

χρ ′(u) = ηw◦uχρ(u)

Wρ ′(v) = Wρ(v + w).

Note that if ρ commutes with Sw, the Wigner function is invariant under translations along w.
Furthermore, the characteristic function vanishes for u such that w ◦ u �= 0 mod p.

(5) The marginal distributions are easily computed. We consider the more general case
of summing along the points on any of the lines in phase space, where a line in phase space
V2(p) is defined as the set of points that satisfy the equation

L(b, s) = {(x, y) : −xb + y − s = (x, y) ◦ ub − s = 0, b, s ∈ Zp}
L(p, s) = {(s, y) : −x + s = (x, y) ◦ up + s = 0, b, s ∈ Zp}.

(31)

L(b, s) is the line with ‘slope’ b which intersects the vertical axis at s, and L(p, s) is a ‘vertical’
line that intersects the horizontal axis at x = s (see appendix E). Let

fb(s) =
∑

v

W(v)δ(v ◦ ub − s, 0),

then using equations (26) and (21), we can show that

fb(s) = 1

p

−p +
∑
a �=b

Tr

[
ρ

p−1∑
r=0

Pua
(r)

]
+ pTr

[
ρPub

(s)
]

= Tr
[
ρPub

(s)
]
.

We have used the fact that for a �= b the sum over v becomes a sum over Zp, and this sum is
the identity operator, while for a = b, we have v ◦ ub = s. Therefore, we see that summing
the Wigner function over any line in phase space gives the probability that the system is in the
corresponding MUB state.

(6) Since Wρ and χρ are Fourier transforms of one another, Plancheral’s formula gives

p2
∑

v

Wρ(v)2 = |χρ(0)|2 +
p∑

a=0

p−1∑
m=1

|χρ(mua)|2. (32)

We also have, setting mua = (j, k) = v,

|χρ(v)|2 = |Tr ρSv|2 = 〈ρ, Sv〉〈Sv, ρ〉.
using equation (7). More generally,

χ∗
ρ1

(v)χρ2(v) = (Tr ρ1Sv)
∗ Tr ρ2Sv = 〈ρ1, Sv〉〈Sv, ρ2〉.

Summing over the complete set of Sv , from equation (14), we can write Plancheral’s formula,

Tr [ρ1ρ2] = p
∑

v

Wρ1(v)Wρ2(v). (33)

See also [8] where the derivation is based on equation (28).
The support of a function f (v) on phase space is defined by

supp(f ) = {v ∈ V2(p) : f (v) �= 0} (34)

and |supp(f )| is defined as the number of points in supp(f ). From equation (33) we have

pW 2
ρ (v0) � p

∑
v

W 2
ρ (v) = Tr ρ2 � 1. (35)
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which implies that for any point v0,

|W(v0)| � 1√
p

.

Now let

µWρ
(v) =

{
1 v ∈ supp Wρ

0 otherwise.

Then applying the Schwarz inequality to the normalization equation and using equation (35)
we get

1 =
∑

v

Wρ(v)µWρ
(v) �

√∑
v

W 2
ρ (v)µWρ

(v)
∑

u

µWρ
(u) �

√
1

p
|supp Wρ |

or

|supp Wρ | � p.

This is analogous to the continuous case where the uncertainty principle implies that W(q, p)

cannot be concentrated into too small a region. We have seen that if ρ is a pure state selected
from the MUB then |supp Wρ | = p and Wρ(v) = 1/p on its support; thus the lower bound is
attained.

If ρ1 and ρ2 correspond to orthogonal states, then equation (33) gives∑
v

Wρ1(v)Wρ2(v) = 0,

which along with the normalization condition implies that, either supp Wρ1 and supp Wρ2 are
disjoint or at least one of the Wigner functions must take negative values. For example, we
saw in section 5.2.2 that the orthogonal states in one of the bases of a set of MUB have support
on non-intersecting lines of V2(p).

There is an inequality, referred to as an uncertainty principle, that also follows from the
discrete Fourier transform:

|supp Wρ ||supp χρ | � p2,

[22]. Equality holds for the random state discussed in section 5.2.3 above.

5.4. Inversion formula

In the case of continuous phase space, the density matrix for a particle confined to one
dimension can be obtained from equation (6) by using the inverse Fourier integral. We can
proceed in a similar manner for the discrete case. First using the discrete Fourier inversion
formula,

χ(mua) =
∑

v∈V (p2)

W(v)η−v◦mua (36)

Then from equation (22) and the completeness of the spin matrices

ρ = 1

p

(
S0,0 +

p∑
a=0

p−1∑
m=1

χ(mua)
∗Sm

ua

)
. (37)

Substituting (36) into (37), and using equations (15) and (27), we also get

ρ =
∑

v∈V (p2)

W(v)A(v). (38)

Therefore, we have an expression for the density matrix as an expansion in the spin matrices
with coefficients given by the characteristic function and an equivalent expansion in terms of
a basis of Hermitian operators with the Wigner function as coefficients.
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6. Mutually unbiased bases II

To define the generalized spin matrices in the case when d = pn where p is prime, we require
the notion of a finite or Galois field GF(pn), see appendices A and B for more details. There is
a systematic way of representing the elements in GF (pn) that uses the structure of polynomials
irreducible over GF (p) = Zp. An irreducible polynomial is a polynomial f (x) of degree
n with coefficients in GF(p) that cannot be factored into non-constant polynomials of lower
degree. Then the elements of GF(pn) may be represented by polynomials of degree less than
n with coefficients in GF(p). The simplest example is that of two qubits, p = 2, n = 2. In
this case, the irreducible polynomial is unique and is given by x2 + x + 1. Define λ to be a
symbolic solution of x2 + x + 1 = 0 mod 2. Then every element of GF(22) can be written
as α = a0 + λa1 where a0 and a1 are in GF(2). This is analogous when working with real
numbers to letting i denote a symbolic solution of the equation x2 + 1 = 0 and introducing
complex numbers as x + iy.

For the case of n = 2 and p an odd prime, let D be an element in GF(p2) such that there
is no solution in Zp = GF(p) to the equation x2 − D = 0 mod p. In technical terms, D is
a quadratic non-residue of p. There are an equal number of quadratic residues and quadratic
non-residues in GF(p). Then elements in GF(p2) can be represented as j + kλ, where j and
k are in GF (p) and λ is taken to be a symbolic solution of x2 − D = 0 mod p. Addition and
multiplication of elements of GF(p2) are defined by

(j1 + k1λ) + (j2 + k2λ) = (j1 + j2) + (k1 + k2)λ

(j1 + k1λ)(j2 + k2λ) = (j1j2 + Dk1k2) + (j1k2 + k1j2)λ,

where the additions in the parentheses are modulo p. We refer to appendix B for more details.
We can construct a complete set of mutually unbiased bases when d = pn by following

the same procedure that was used in the d = p case [28]. The key idea for constructing a
MUB is based on the fact that we can define a two-dimensional vector space V2(p

n) over
GF(pn), and pn + 1 generating vectors uα where α is in the index set Ipn = GF(pn) ∪ {pn}.
Specifically, define

uα =
{
(1, α), α ∈ GF(pn)

(0, 1), α = pn (39)

Each of these vectors can be used to define a class containing pn vectors,

Cα = {βuα, β ∈ GF(pn)} (40)

where α ∈ Ipn . Each pair of vectors in a class has vanishing symplectic product, equation (11)
where the operations are with respect to GF(pn). We want to find a spin matrix representation
of these classes, that is, we wish to find a mapping from this space to the set of tensor products

Su =
n−1⊗
r=0

Sur
(41)

where u = ⊕n−1
r=0 u(r) ∈ V2n(p) and each u(r) ∈ V

(r)
2 (p) = V2(p). To do this we define an

isomorphism

M : V2(p
n) → V2n(p) =

n−1⊕
j=0

V
(j)

2 (p)
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that preserves the symplectic product in the following sense. For each vector v ∈ V2(p
n), if

M(v) = v =⊕n−1
j=0 u(j), where u(j)εV

(j)

2 (p), define

v1 ◦ v2 =
p−1∑
j=0

(
u

(j)

1 ◦ u
(j)

2

)
. (42)

Then v1 ◦ v2 = 0 implies v1 ◦ v2 = 0 as is shown in equation (B.2). We present an outline of
the derivation of M in appendix B and refer to [20] for another discussion. It is worth noting
that the construction of V2n(p) is analogous to what is done in the continuous case. There
we take the direct sum of the two-dimensional vector spaces corresponding to independent
conjugate position and momentum pairs.

To perform the analogue of what was done in equation (18), it is useful to introduce the
generators of the index set for the set of MUB, again the details are given in appendix B. For
α ∈ Ipn, define λruα ∈ V2(p

n), r = 0, . . . , n − 1. Then define a set of generators on V2n(p)

Gα = {gr (α) = M(λruα), r = 0, . . . , n − 1}, (43)

and define the corresponding spin matrix using equation (41) as

Sb
gr (α) ≡

n−1⊗
j=0

Sb

u
(j)
r (α)

(44)

where each Su(j) acts on a Hilbert space Hp. The generalization of equation (18) is

Gα → Mα =


n−1∏
r=0

S
br

gr (α) =
n−1⊗
j=0

n−1∏
r=0

S
br

u
(j)
r (α)

, br ∈ GF(p)

 (45)

for the generation of pn + 1 disjoint sets of pn of commuting operators Mα where
Mα ∩ Mβ = {S0,0} for all α �= β. We have written the mapping in equation (45) from
the set of basis vectors Gα rather than the space Cα .

It is also possible to write down the set {Pα (r) , r ∈ Vn (p)} of rank 1 orthogonal
projections defined by each of the pn + 1 commuting classes Mα . This gives the set of
MUB as projections defined explicitly in terms of sums of the spin matrices in each class. The
procedure to do this is discussed in [20], and is illustrated there for the case for n = 2. The
corresponding projection operators for the case p > 2 are

Pα(s) =
n−1∏
r=0

Pgr (α)(sr )

Pgr (α)(sr ) =
(

1

p

p−1∑
br=0

[
ηsr Sgr (α)

]br

)
,

(46)

where s = (s0, . . . , sn−1). For p = 2 it is necessary to include the factors α2(j, k) in the
definition of the projection operators as shown in equation (15). Pα(r) has trace 1, and it is
straightforward to check that if r �= s

Pα(r)Pα(s) = δ(r, s)Pα(r).

It is easy to show that each Pα(r) is a product of commuting projections. One can also show
that Pα(r) = (Pα(r))†, and it follows that Pα(r) is a rank 1 orthogonal projection and that

I =
∑

r

Pα(r).
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Finally, it can be shown that for α �= β

Tr[Pα(r)Pβ(s)] = 1/pn.

The explicit calculation of the projections and of the set of vectors in V2n(p) corresponding
to Cα depends quite specifically on p and n and on the representation of elements in the different
finite fields. When n = 2 and p is an odd prime, however, one can give a unified summary
of the results of the theory. Without going through the detailed construction outlined in
appendix B, it is easy to check that the vectors in each of the classes below have symplectic
product zero.

6.1. Example d = p2

Let d = p2 with p an odd prime and D such that x2 −D = 0 mod p has no solution in GF(p).
In appendix B, equation (C.4), it is shown that the p2 + 1 commuting classes of indices are
generated by

Ga0,a1 = {(1, 2a0, 0, 2Da1), (0, 2Da1, 1, 2Da0))}
where a0 and a1 are in GF(p), and

Gp2 = {(0, 1, 0, 0), (0, 0, 0, 1))}.
One can check directly that the vectors in each Ga0,a1 have vanishing symplectic product.
Then the spin matrices that generate the commuting classes may be written as

Ga0,a1 → M(a0,a1) = {(S1,2a0 ⊗ S0,2Da1

)b0
(
S0,2Da1 ⊗ S1,2Da0

)b1
, b0, b1 ∈ GF(p)

}
,

Gp2 → Mp2 = {(Sb0
0,1 ⊗ S0,0

)(
S0,0 ⊗ S

b1
0,1

)
, b0, b1 ∈ GF(p)

}
.

(47)

The corresponding projections are given by

Pa0,a1((r0, r1)) = 1

p

p−1∑
b0=0

((
ηr0S1,2a0 ⊗ S0,2Da1

)b0
) 1

p

p−1∑
b1=0

((
ηr1S0,2Da1 ⊗ S1,2Da0

)b1
)

Pp2((r0, r1)) = 1

p

p−1∑
b0=0

((ηr0S0,1 ⊗ S0,0)
b0)

1

p

p−1∑
b1=0

((ηr1S0,0 ⊗ S0,1)
b1).

We note that each of these one-dimensional projection operators is the product of two
commuting rank p-dimensional projections. The two p-dimensional spaces that they project
onto intersect in a one-dimensional space.

7. Wigner function for d = p2

In earlier work [2, 8], the phase space on which the Wigner functions were defined when
d = pn was chosen to be V2(p

n). The advantage of this choice is that one can use the
underlying geometry to great advantage. The disadvantage is that one has to label coordinates
using elements from the Galois field GF(pn) which does not lend itself to a discussion of
separability. However, as we saw in section 6, and as is elaborated in appendix B, there is a
natural isomorphism M between V2(p

n) and V2n(p) which encodes the geometry of V2(p
n) in

V2n(p). We take advantage of this structure to define our Wigner function on V2n(p). This is
in close analogy to the continuous case and simplifies computations involving the generalized
spin matrices.

In particular, this approach enables questions involving separability to be treated
efficiently. In this section, we illustrate the ideas in detail for n = 2, leaving the generalizations
to the next section and appendix C.
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7.1. Separability of the Wigner function for p an odd prime

We consider a bipartite system composed of subsystems of dimension p, a prime. As we saw
in section 5, there is a certain latitude in the definition of the Wigner function that is available
because of the freedom to include phase factors in the characteristic function. Our goal in this
section is to show how that freedom enables us to define Wigner functions for one and two
subsystems so that separability is respected. Specifically, for a product state we want

ρ = τ ⊗ µ ⇒ Wρ(u) = Wτ(u
(0))Wµ(u(1)), (48)

where u = u(0) ⊕ u(1). Then, since Wρ(u) is convex linear on the space of densities, we will
have the general statement that

ρ =
∑

k

pkτk ⊗ µk ⇒ Wρ(u) =
∑

k

pkWτk
(u(0))Wµk

(u(1)). (49)

A natural definition of the characteristic function χ = χρ is to use equation (44) with
n = 2, and define

χ̃ (w) = Tr
[
ρS

b0
g0(α)S

b1
g1(α)

]
(50)

where w = b0g0(α) + b1g1(α). We can rewrite the product of the S matrices on Hp2 as a direct

product of S matrices on H(0)
p ⊗ H(1)

p . Rewriting w = u(0) ⊕ u(1) where u(j) ∈ V
(j)

2 (p), we
find

χ̃ (w) = η� Tr[ρSu(0) ⊗ Su(1) ].

The problem with this definition is that in general � �= φ(u(0)) + φ(u(1)), so that the
corresponding Wigner function would not factor when ρ is a product state. Now as pointed
out before, there is some freedom in the choice of phase in defining the characteristic function
and the Wigner function. For this reason, it is convenient to introduce a phase factor into the
definition of the characteristic function to avoid this problem. We shall therefore define the
characteristic function as

χ(w) = η−�χ̃(w), (51)

using equation (50) and the � defined in equation (C.11) that is linear in b0 and b1. The
linearity in the b is important, as we shall see, because we want to write the analogue of
equation (26) with the appropriate projection operators given in equation (46).

The underlying reason for having to introduce the phases arises from the fact that we are
using the geometries of V2(p

2) and V4(p). That fact forces us to go into some detail to define
appropriate phase factors and to confirm that they work.

For example, consider the case of p odd discussed at the end of the last section. For
α �= p2 define

χρ(w) = Tr
[
ρ
(
η−Da1Sg0

)b0
(
η−Da1Sg1

)b1
]
, (52)

and for α = p2 define

χρ(w) = Tr
[
ρ
(
η−2−1

Sg0

)b0
(
η−2−1

Sg1

)b1
]
. (53)

Then define

Wρ(u) = 1

p4

∑
w

ηu◦wχρ(w). (54)

Note again that −2−1 is computed modulo p and equals (p − 1)/2. The vector symplectic
product in the exponent of η is defined in equation (42). From equation (25) we can write out
the right-hand side of equation (48) with one modification. For mup = m(0, 1) take

χτ (mup) = Tr
[
τ
(
η−2−1

Sup

)m]
, (55)
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as we did in section 5.2.4. Then Wτ(u) is defined as the usual symplectic transform and can
be written as

Wτ(u) = 1

p2

[
p−1∑
m=0

ηu◦mupχτ (mup) +
p−1∑
c=0

p−1∑
m=1

ηu◦mucχτ (muc)

]
. (56)

Finally, we get the right-hand side of equation (48) as the trace of 1
p2 (τ ⊗ µ) times the

expression

rhs =
p−1∑
m0=0

p−1∑
m1=0

ηu◦(0,m0,0,m1)η−2−1(m0+m1)Sm0up
⊗ Sm1up

+
∑

(c0,c1)�=(p,p)

∑
(m0,m1)�=(0,0)

ηu◦(m0uc0 ⊕m1uc1 )η−2−1(δ(c0,p)m0+δ(c1,p)m1)
(
Suc0

)m0 ⊗ (Suc1

)m1
.

The left-hand side of equation (48) can be written as the trace of 1
p2 (τ ⊗µ) times the expression

lhs =
p−1∑
b0=0

p−1∑
b1=0

ηu◦(b0g0(p
2)+b1g1(p

2))η−2−1(b0+b1)S(0,b0,0,b1)

+
∑
α �=p2

∑
(b0,b1)�=(0,0)

ηu◦(b0g0(α)+b1g1(α))η−Da1(b0+b1)
(
Sg0(α)

)b0
(
Sg1(α)

)b1
.

Note that in this equation we have the ordinary matrix product in the second term.
Our goal is to confirm that equation (48) holds with the above definitions of the

characteristic functions. Using equation (12) we can pair the indices of the spin matrices
in equation (48) to obtain the index equation relating terms in rhs to lhs,

w = m0uc0 ⊕ m1uc1 = b0g0(α) + b1g1(α), (57)

which includes the w = (0, 0, 0, 0) term that is incorporated in the first summations. It follows
that the phase factor ηu◦(b0g0(α)+b1g1(α)) is common to the corresponding terms of rhs and lhs,
and we can cancel it. It is also obvious that the α = p2 terms equal the corresponding terms
associated with c0 = c1 = p and that the remaining phase factors in this case are also equal if
we set mk = bk .

To match terms in the second sets of summations, we multiply out the powers of the spin
matrices in lhs to obtain

Sm0uc0
⊗ Sm1uc1

= Sb0(1,2a0)+b1(0,2Da1) ⊗ Sb0(0,2Da1)+b1(1,2Da0),

where the equality follows from the index equation. This process introduces phase factors
using equations (10) and (12), and it remains to prove that the resulting exponents of η are
equal. Specifically, one has to verify that subject to equation (57)

(1 − δ(c0, p))c0

(
m0

2

)
+ (1 − δ(c1, p))c1

(
m1

2

)
− 2−1(δ(c0, p)m0 + δ(c1, p)m1) (58)

equals

−Da1(b0 + b1) + 2a0

(
b0

2

)
+ 2Da0

(
b1

2

)
+ 2b0b1Da1. (59)

We verify the equality for α �= p2 by considering different cases. Let α = a0 + a1λ. If b0 and
b1 are both non-zero, m0 = b0,m1 = b1 and

b0c0 = b02a0 + b12Da1, b1c1 = (b02Da1 + b12Da0).
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If b0 = 0,

w = (0, b12Da1) ⊕ (b1, b12Da0)

and c0 = p,m0 = b12Da1, c1 = 2Da0 and m1 = b1. Similarly, for b1 = 0

w = (b0, b02a0) ⊕ (0, b02Da1),

and m0 = 2Da0,m0 = b0,m0 = p and m1 = b02Da1. Substituting these expressions in
equation (58) gives (59). We have gone through this in some detail because the method
illustrated generalizes to the case of complete separability of n subsystems. It should be noted
that the argument leading to equation (48) did not require that τ or µ be a density matrix.

Our ability to add a phase factor to the definition of the characteristic function is related
to an arbitrariness in the assigning of state vectors in a basis on the Hilbert space to lines in
phase space as noted in [8]. This is illustrated in section 7.3.2.

A different definition of the Wigner function in terms of the characteristic function can
be found in [24]. Vourdas replaces the M transformation by introducing the trace operation
into the Fourier transformation.

7.2. Properties of the Wigner function

Because we have used the same format in defining the Wigner function for two subsystems,
equation (54), as was used in defining it for a single subsystem, equation (25), we expect
the properties in section 2 to hold. With the definition of χρ(w) in equations (52) and (53)
conditions (23) and (24) are satisfied. The discrete Wigner function Wρ for a density ρ on
Hp2 is defined using the symplectic Fourier transform (54); consequently, Wρ is convex linear
on the space of densities and linear on the space of p2 × p2 matrices. Again, the defining
equation (54) is invertible, so that one can obtain the χρ(w) and thus the spin coefficients of
ρ from the Wigner function. With this definition Plancheral’s formula becomes

p4
∑

v∈V4(p)

|W(v)|2 = |χ(0)|2 +
p∑

q,r=0

∑
M

∣∣χ(m(0)u(0)
q ⊕ m(1)u(1)

r

)∣∣2.
We also have, as in equation (33), that

Tr[ρ1ρ2] = p2
∑

v

Wρ1(v)Wρ2(v),

and, consequently, |W(v)| � 1/p and |supp W(v)| � 1/p2. Using the notation of
equation (46), we can write

Wρ(u) = Tr[ρA(u)] (60)

where

p2A(u) = −S0,0 ⊗ S0,0 + Pp2(−2−1 + u ◦ g0(p
2),−2−1 + u ◦ g1(p

2))

+
∑
α �=p2

Pα(−Da1 + u ◦ g0(α),−Da1 + u ◦ g1(α)), (61)

corresponding to equation (27). From equation (61) it follows that Wρ is real for densities
ρ. In particular, {A(u)} again defines a complete orthogonal set of Hermitian matrices. The
argument is analogous to that leading to equation (27) and leads to

Tr[A(u)A(v)] = p−2δ(u, v).

Thus we can interpret the Wigner function Wρ as the set of coefficients of ρ in the orthogonal
expansion relative to {A(u)} analogous to equation (38).
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The analogues of the other properties of section 5.3 follow in the same way as before. W

is normalized since we can use equation (60) to prove∑
u

Wρ(u) = Tr

[
ρ
∑

u

A(u)

]
= Tr[ρ] = 1

since equation (29) holds in this case. If ρ ′ = S
†
zρSz ∈ Hp ⊗ Hp, then χρ ′(w) = ηz◦wχρ(w),

and Wρ
′ (u) = Wρ(u + z) as before.

Summing Wρ(u) over a ‘line’ in V2(p
2) corresponds to summing over a translation of a

two-dimensional subspace in V4(p) and again leads to a marginal probability Tr[ρPα(s1, s2)].
To see this let Cα denote the two-dimensional subspace associated with α. It is easy to show
that ∑

u∈Cα

Wρ(u + r) = 1

p2

∑
w∈Cα

ηr◦wχρ(w).

This can be written as the trace of ρ against the projection Pα(s1, s2) for appropriate indices
s1 and s2 which depend on r and the phase factors used in the definition of the characteristic
functions. Thus using the definition of equation (54) the Wigner function satisfies the
conditions proved in section 5.3 and the requirement that Wρ factor for separable ρ as in
equation (49).

As pointed out to us by Wootters, equation (48) may be used to give a positive answer to
a question posed in [8]. That is, with the phase factors given above, we have

A(u) = A(u(0)) ⊗ A(u(1))

where u = u(0) ⊕ u(1). The proof is easy, rewrite equation (48) as

Tr[τ0 ⊗ τ1A(u)] = Tr[τ0 ⊗ τ1A(u(0)) ⊗ A(u(1))].

This equality holds even if τ are not densities. Since Hermitian matrices of the form τ ⊗ µ

form a basis of Mp2 , this inequality holds for all A(u) for all u ∈ V4(p).

7.3. Examples

7.3.1. Maximally entangled state. For prime p let |�〉 = 1√
p

∑
j |j 〉|j 〉, so that ρ ≡

|�〉〈�| = 1
p

∑
j,k |j 〉〈k| ⊗ |j 〉〈k|. By the separability property and linearity we know that if

u = u(0) ⊕ u(1) = (x0, y0, x1, y1), then

Wρ(u) = 1

p

∑
j,k

W|j〉〈k|(u(0))W|j〉〈k|(u(1)),

where W|j〉〈k|(u) is defined in equation (30). It follows that

Wρ(u) = 1

p3

∑
j,k

η(x0+x1+1)(k−j)δ(y0 + 2−1(j + k), 0)δ(y0 + 2−1(j + k), 0),

and simplifying we get

Wρ(u) = 1

p2
δ(1 + x0 + x1, 0)δ(y0, y1)

Thus the Wigner function for this maximally entangled state equals 1/p2 for the p2 4-vectors
with u(0) = (x0, y0) and u(1) = (−1 − x0, y0) and equals zero elsewhere.

Although the Wigner function for this state is positive, it is a non-classical state. In
particular, entangled states violate Bell inequalities. Since the Wigner function discussed
in this example is not separable, it need not respect mathematical inequalities based on
separability.
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7.3.2. MUB. Let ρ = Pα(s0, s1). In this case, it is simplest to use equation (61) so that

Wρ(u) = 1

p2
Tr[Pα(s0, s1)A(u)]

= 1

p2

−1 +
∑
β �=α

Tr[Pα(s0, s1)Pβ(r0,β(u), r1,β(u))]

+ Tr[Pα(s0, s1)Pα(r0,α(u), r1,α(u))]

]

= 1

p2
[−1 + p2/p2 + δ(s0, r0,α(u))δ(s1, r1,α(u))]

= 1

p2
δ(s0, r0,α(u))δ(s1, r1,α(u))

Thus, Wρ(u) equals 1/p2 on those p2 4-vectors which match the given phases and equals
zero elsewhere. For α �= p2, rk,α(u) = −Da1 + u ◦ gk(α), and it can be shown easily that the
set of 4-vectors satisfying those conditions is

{u = b0g0(α) + b1g1(α) + (0, s0 + Da1, 0, s1 + Da1) : b0, b1 ∈ GF(p)}.
That is, Wρ(u) is constant on a shift of the two-dimensional subspace indexed by α. An
analogous result holds if α = p2, and, as expected, this parallels the situation when n = 1.

7.4. Separability of the Wigner function for p = 2

When p = 2 equation (54) can be used to define the Wigner function with the definition of
the characteristic function given in equation (62) below. Properties other than separability
follow as before, but the analysis leading to separability for p odd does not work in this case.
The discussion above made use of the existence of a quadratic non-residue D; however, for
p = 2 no such quantity exists. In addition, we must include the factors of α2 = α2(1, 1) = −i

defined at the end of section 3.
Explicit forms of generating vectors are

Ga0,a1 = {(1, a1, 0, a0 + a1), (0, a0 + a1, 1, a0)}
for α = a0 + a1λ ∈ GF(22), and

G4 = {(0, 1, 0, 0), (0, 0, 0, 1)}.
For the case α �= 22, the analogue of equation (52) is

χρ(w) = Tr
[
ρ
(
α

a1
2 ηr0Sg0

)b0
(
α

a0
2 ηr1Sg1

)b1
]

(62)

where r0 and r1 depend on a0 and a1. It is convenient to write the index equation (57) in the
form

w = (b0, q0) ⊕ (b1, q1) = b0g0(α) + b1g1(α),

then it is not difficult to show that for (b0, b1) �= (0, 0)

a0 = b0q0 + (b0 + b1)q1

a1 = (b0 + b1)q0 + b1q1.

This allows us to replace the sums in the Wigner function over a0 and a1 by sums over q0 and
q1. Now we can write

χρ(w) = η(b0r0+b1r1)α
(b0q0+b1q1)

2 ηb0b1(q0+q1)Tr
[
ρSb0,q0 ⊗ Sb1,q1

]
. (63)
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As stated above, we require that the phase factors are linear in the b. In order to enforce this
it is easy to show that if r0 = 0 and r1 = a0 = b0q0 + b1(a0 + a1) the exponent of η is simply
b1q1. This calculation makes use of the binary arithmetic, in particular b2 = b.

Finally, we find that for ρ = τ ⊗ µ the phase factor ηb1q1 requires that we use different
one-particle Wigner functions for the two particles. Equivalently,

Wρ(u
(0) ⊕ u(1)) = Wτ(u

(0))Wµt (u(1))

where µt is the transpose of the qubit density matrix µ. If we had taken r0 = a1 and r1 = 0
the transpose would have appeared on τ , rather than on µ.

7.5. Separability and partial transposition

A necessary condition for separability of a density matrix of a bipartite system ρ ∈ Hp ⊗ Hp

is the Peres condition [18]. That is, the density matrix must transform into a density matrix
under partial transpose

PT : 〈j0, j1|ρ|k0, k1〉 → 〈j0, k1|ρ|k0, j1〉 (64)

The transpose of a spin matrix is given by (Sj,k)
t = η−jkSj,p−k; consequently, under the

PT transformation

χ
(
b0u

(0)
q ⊕ b1u

(1)
r

)→ η−rb1 Tr
[
ρS

b0

u
(0)
q

⊗ S
b1

u
(1)
p−r

]
.

Therefore,

PT : W(u) = W(u(0), u(1)) → W(u(0), p − (u(1) + 1))

Unfortunately, this is not very useful since proving that W corresponds to a density matrix is
not simple, see appendix G.

8. Wigner function: d = pn

The generalization to pn degrees of freedom, where p is prime, is based on the Galois field
(see GF(pn) [20] and appendix B). Starting from equations (39) and (40), the set of vectors
in Cα defined on the phase space V2(p

n) generates a MUB. As before u denotes a vector
in V2n(p) = ⊕n−1

j=0 V
(j)

2 (p) that we also write as u = ⊕n−1
j=0 u(j) where u(j) ∈ V

(j)

2 . These

indices define the tensor products of spin matrices by S(u) = ⊗n−1
j=0Su(j) . We also use the

vector symplectic product introduced in equation (42). When p = 2 we need the usual factor
of −i if u(j) = (1, 1).

The basic structure of the classes of indices defined by the mapping M is discussed
in section 6 and appendix B. Specifically, class Cα of V2(p

n) maps onto an n-dimensional
subspace of V2n(p). Each subspace is spanned by a set of n vectors Gα as defined in
equation (43) that depend explicitly on the parameters α = (a0, a1. . . . , an−1) in GF(p) which
define α in GF(pn) as a vector over GF(p). Since u ◦ v = 0 for any two vectors in Cα , it
follows gr (α) ◦ gs(α) = 0 for two generating vectors.

As in the case of n = 1 and n = 2, each non-zero vector in one of the Cα is mapped into
a w �= 0 ∈ V2n(p) that can be written uniquely as

w =
n−1∑
j=0

bj gj (α).

Assume p is odd. Following the paradigm established earlier, for a given density ρ define

χρ(w) = Tr
[
ρ
(
ηr0Sg0(α)

)b0 · · · (ηrn−1Sgn−1(α)

)bn−1
]
. (65)
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A discrete Wigner function for a density ρ on Hpn

is defined as

Wρ(u) = 1

p2n

∑
w

ηu◦wχρ(w)

where u ◦ w is defined in equation (42).
It is not difficult to show that Wρ(u) is real and

∑
u Wρ(u) = 1. The proof is simply a

matter of keeping track of the various representations:

Wρ(u) = 1

p2n

1 +
∑

α

p−1∑
(b0,...,bn−1)�=(0,...,0)

η
∑

j u◦(bj gj (α))Tr
[
ρ
(
ηr0Sg0(α)

)b0 · · · (ηrn−1Sgn−1(α)

)bn−1
]

= 1

pn

−1 +
1

pn

∑
α

Tr

ρ
∏
j

p−1∑
bj =0

(
η(u◦gj (α)+rj )Sgj (α)

)bj


= 1

pn

[
Tr

(
ρ

[
−I +

∑
α

Pα(u ◦ gj (α) + rj )

])]
.

This immediately confirms that Wρ is real and shows that Wρ(u) is the coefficient of the
Hermitian matrix Au = (−I +

∑
α Pα(u ◦ gj (α) + rj )

)
/pn.

For the normalization, summing over u is equivalent to summing over all of the vectors
in each α summand,∑

u

Wρ(u) = 1

pn

[
−pn +

∑
α

Tr(ρI)

]
= 1

as required. Again note that we inserted a factor of ηrk into the gk(α) term to define a set of
Wigner functions. This latitude of definition is exploited in the appendix to give complete
separability when p is an odd prime. Furthermore, with this special choice of phase factors,
the analogue of equation (48) holds and the generalization of the argument for n = 2 gives

A(u) =
n−1⊗
j=0

A(u(j)),

where u =⊗n−1
j=0 u(j).

For p = 2 the same calculations apply provided factors of −i are included where
required. However, the methodology establishing separability fails for n > 2, and as far as we
can determine the Wigner function as defined above does not respect separability.

9. Dynamics

For completeness, we conclude with a discussion of Hamiltonian dynamics in the present
context. Starting from the Heisenberg–von Neumann equation for a d-dimensional system

dρ

dt
= i[ρ,H ] = −i(Hρ − ρH) (66)

(h̄ = 1) we obtain a closed form for the dynamics of either the Wigner function or the
characteristic function when d = p, a prime.

Let p denote an odd prime. The spin coefficients of a density ρ are defined by

su = Tr
(
S†

uρ
)

(67)
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so that

ρ = 1

p

[∑
u

suSu

]
. (68)

In defining the Wigner function, however, we emphasized the role of the characteristic
functions χρ(mua) rather than the spin coefficients, and we also noted that one could add
phase factors. For this discussion we use

χρ(mua) =
{

Tr
(
ρ
(
η2−1aSua

)m)
a �= p

Tr
(
ρ
(
Sup

)m)
a = p

since the extra phase factors simplify the analysis. The same convention will be used for the
Hamiltonian H. Of course, the spin function and characteristic function are simply related.
Using equation (22), we obtain for y = (y0, y1) = mua

sy = η2−1y0y1χρ(−y), (69)

and the phase factors allow us to avoid making a = p an exceptional case in (69). Thus (68)
becomes

ρ = 1

p

∑
u

η2−1u1u0χρ(−u)Su. (70)

Since the spin matrices are orthogonal, it is easy to show that

dχρ(−w)

dt
= i
∑

u

L(w, u)χρ(−u) (71)

where

L(w, u) = 1

p
χH(u − w)(η2−1w◦u − η2−1u◦w). (72)

Equation (69) enables one to convert (72) to describe the dynamics in terms of the spin
coefficients rather than the characteristic functions. It is easy to check that L is a Hermitian
operator indexed by V2(p), so that (71) can be solved in closed form.

The evolution of the system can also be expressed in terms of the evolution of the Wigner
functions. Using equation (25) together with the results above, we avoid explicit use of the
A(u) operators. Since the Wigner function is real, using equation (24)) we can write

Wρ(v) = 1

p2

∑
w

ηv◦wχρ(w) = 1

p2

∑
w

ηw◦vχρ(−w). (73)

Then taking the time derivative, using (72) and then inverting (73) gives

dWρ(v)

dt
= i
∑

v

L̃(v, y)Wρ(y), (74)

where

L̃(v, y) = 1

p
[η2v◦yχH (2(y − v)) − η2y◦vχH (2(v − y))] (75)

is Hermitian on V2(p).
This representation works best when the density ρ evolves in the convex hull of the MUB

projections. As an example when p = 3, let the Hamiltonian be

H = ω
(
S0,1 + S

†
0,1

)



6028 A O Pittenger and M H Rubin

and take ρ(0) to be P(1,1)(0) = 1
3 [S0,0 + S1,1 + ηS2,2]. Computing L and finding its spectral

decomposition leads to the expression of ρ(t) in terms of MUB projections as

ρ(t) = 1
3 [(1 + 2 cos(ωt))P(1,1)(0) + (1 + 2 cos(ωt + 2π/3))P(1,0)(1)

+ (1 + 2 cos(ωt + 4π/3))P(1,2)(2)].

In the special case of p = 2, the necessity of selectively introducing a factor of −i

modifies the form of L. Any density ρ can be written as

ρ = 1
2 [σ0 + mxσx + mzσz + myσy]

= 1
2 [S0,0 + s0,1S0,1 + s1,0S1,0 + s1,1S1,1].

where s0,1 = mx, s1,0 = mz and s1,1 = −imy, and the m′s are real with square sum less than
or equal to 1. Defining the characteristic function as before,

χρ(j, k) = Tr[ρ(αj,kSj,k)],

we find that χρ(u) equals the corresponding m and

sj,k = (−i)jkχρ(j, k).

Working through the differential equation leads to a similar form,

dχρ(v)

dt
= i
∑

u

L(v, y)χρ(y) (76)

with L a Hermitian matrix given by

L(v, y) = 1
2χH (v + y)[(i)y◦v − (i)v◦y]. (77)

Thus the structure of L is similar to the p > 2 case but with powers of i rather than powers
of η = −1. That difference makes the corresponding equation for the Wigner function more
complicated, and we do not present it here. Our conclusion is that the discrete Wigner function
is not particularly useful for studying the dynamics of a two-level system.

A similar approach works for n systems, and we record the results for n = 2. For
u = u(0) ⊕ u(1) = b0g0(α) + b1g1(α) set

χρ(u) =
{

Tr
[
ρ
(
η2−1y00Sg0

)b0
ρ
(
η2−1y11Sg1

)b1
]

α �= p2

Tr
(
ρ
(
Sg0

)b0
(
Sg1

)b1
)

α = p2

where for α �= p2 we use g0(α) = (1, y00, 0, y01) and g1(α) = (0, y10, 1, y11). Recall that
y01 = y10. One can then prove for all cases of α that

χρ(−u) = χ∗
ρ (u)

and setting u(k) = (u(k)
0 , u

(k)
1

)
su = η2−1(u

(0)
0 u

(0)
1 +u

(1)
0 u

(1)
1 )χρ(−u), (78)

again for all α.
Recall the vector symplectic product

u ◦ w =(u(0), u(1)) ◦ (w(0), w(1)) =
1∑

k=0

u(k) ◦ w(k),

and for convenience set 〈u, u〉 = u
(0)
0 u

(0)
1 + u

(1)
0 u

(1)
1 . Then

ρ = 1

p2

∑
u

η2−1〈u,u〉χρ(−u)Su. (79)
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Using the analogous representation for the Hamiltonian, we have the analogue of (71),

dχρ(−w)

dt
= i
∑

u

L(w, u)χρ(−u), (80)

where

L(w, u) = 1

p2
χH (−w + u)(η2−1w◦u − η2−1u◦w) (81)

is Hermitian on V4(p).
The derivation of the dynamics in terms of the Wigner functions follows almost word for

word the pattern in the n = 1 case, since the computation of the Wigner function in terms of
the characteristic function is symbolically identical. This time

L̃(v, z) = 1

p2
[η2z◦vχH (2v − 2z) − η2v◦zχH (2z − 2v)] (82)

is Hermitian on V4(p) and

dWv

dt
= i
∑

z

L̃(v, z)Wz. (83)

When p = 2 = n, we obtain a structurally similar result, although as before powers of i
appear instead of powers of η. Letting u(k) = (u(k)

0 , u
(k)
1

)
and u = u(0) ⊕ u(1),

χρ(u) = (−i)〈u,u〉su

and
dχρ(w)

dt
= i
∑

u

(
1

4
χH (w + u)[iu◦w − iw◦u]

)
χρ(u).

The operator in the sum is Hermitian, and again the transformation to the Wigner function
context does not seem to be particularly useful.
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Appendix A. Finite fields

From [14]. A finite field K is a finite set of elements that contains an additive unit 0 and
a multiplicative unit 1, that K is an Abelian group with respect to addition, K∗ = K − {0}
forms an Abelian group under multiplication, and the usual associative and distributive laws
hold. The simplest example of a finite field is the set of integers modulo a prime number p
that is denoted by Zp = {0, 1, . . . , p − 1}. If p is not prime there are elements that do not
have inverses, for example the set Z∗

4 = {1, 2, 3} does not form a multiplicative group because
22 = 0 mod 4.

It can be shown that if K is a finite field, then |K|, the number of elements in K is pn, the
power of a prime. Fields with the same number of elements are isomorphic and are generically
denoted as the Galois field GF(pn). A field containing pn elements, n > 1, can be constructed
using an irreducible polynomial f of degree n that has coefficients in GF(p) = Zp. Let

f (x) = xn + cn−1x
n−1 + · · · + c1x + c0
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be such a polynomial. Let λ /∈ GF(p) denote a symbolic root of f (x) = 0 so that

λn = −(cn−1λ
n−1 + · · · + c1λ + c0). (A.1)

It can be shown that each element in GF(pn) can be represented as

α(λ) =
n−1∑
k=0

akλ
k. (A.2)

Addition and multiplication proceed in the usual manner with the replacement of powers of λ

greater than n− 1 reduced by using equation (A.1). While the explicit representation depends
on the choice of f , the theory guarantees that different representations are isomorphic.

As an example, we saw in section 6 that if n = p = 2, then f (x) = x2 + x + 1 and
GF(4) = {0, 1, λ, λ + 1}. For p an odd prime and n = 2 we noted that elements of GF(p2)

could be written as j + kλ, where j and k are in GF(p) and f (x) = x2 −D with D a quadratic
non-residue modp.

In addition, there is a trace operation defined on GF(pn) that is linear over GF(p) and
that maps GF(pn) to GF(p). Specifically, if λ0, . . . , λn−1 denote the n distinct roots of f ,
then

Tr(α(λ)) ≡
n−1∑
r=0

α(λr).

The elements α in GF(pn) can thus be viewed as a vector space over the field GF(p) with
basis {λk : 0 � k < n}. A dual basis {gk(λ) : 0 � k < n} can be defined such that elements
of GF(pn) also can be written as linear combinations of the gk with coefficients in GF(p).
The definition of a dual basis uses the trace operation with the requirement that

Tr[λjgk(λ)] = δ(j, k).

This structure was described in the appendix of [20] and the complete theory is presented in
[14].

Appendix B. Mutually unbiased bases for d = pn

For the finite field GF(pn), as is explained in section 6, we start with a vector space V2(p
n).

We need to map the vectors in V2(p
n) onto the space V2n(p) in order to write out the spin

matrices corresponding to the set of MUB. A typical vector βuα can be written as

βuα =
n−1∑
j=0

(x(j)(α, β)ej + y(j)(α, β)fj ). (B.1)

The x(j)(α, β) and y(j)(α, β) are in GF(p) and {ej , fk : 0 � j, k < n} is a set of 2n linearly
independent vectors over GF(pn). It is convenient to take them to be of the form ej = λj (1, 0)

and fk = gk(λ)(0, 1) so that

Tr(fk ◦ ej ) = Tr(λjgk(λ)) = δ(j, k).

The key point to defining a MUB is that for two non-zero vectors in V2(p
n), say γ1uα and

γ2uβ, γ1uα ◦ γ2uβ = 0 iff α = β. Consequently, if in equation (B.1) we set x
(j)
r = x(j)(α, βr)

and y
(j)
r = y(j)(α, βr) for r = 1 and 2, we have
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0 = Tr(β1uα ◦ β2uα)

= Tr

n−1∑
j=0

n−1∑
k=0

(
x

(j)

1 ej + y
(j)

1 fj

) ◦ (x(k)
2 ek + y

(k)
2 fk

)
=

n−1∑
j=0

(
y

(j)

1 x
(j)

2 − x
(j)

1 y
(j)

2

)
=

n−1∑
j=0

((
x

(j)

1 , y
(j)

1

) ◦ (x(j)

2 , y
(j)

2

))
. (B.2)

Identifying the j th vector as the indices of the j th spin matrix in an n-fold tensor product, we
have a necessary and sufficient condition for commutativity:

⊗n−1
j=0Sx

(j)

1 ,y
(j)

1
⊗n−1

k=0 S
x

(k)
2 ,y

(k)
2

= ⊗n−1
k=0Sx

(k)
2 ,y

(k)
2

⊗n−1
j=0 S

x
(j)

1 ,y
(j)

1
.

Thus the set of pn vectors {γ uα, γ ∈ GF(pn)} corresponds to a commuting class Mα of pn

tensor products of spin matrices. The linear mapping M : V2(p
n) → V2n(p) defined by

M

∑
j

(x(j)ej + y(j)fj )

 = (x(0), y(0), . . . , x(n−1), y(n−1)) (B.3)

is one-to-one and onto. Using equation (B.2) this partitions the generalized spin matrices into
d + 1 commuting classes having only the identity in common and satisfying the condition for
the existence of a set of d + 1 mutually unbiased bases. In writing the M mapping we are using
a different definition of the basis {ej , fj } that was used in [20]. The definition in this paper
lends itself more readily to a discussion of separability.

Appendix C. Separability and the M mapping

We provide some details about the mapping M : V2(p
n) → V2n(p). Let λ denote a root of an

nth-order irreducible polynomial over GF(p). On V2(p
n) recall the set of vectors

{ej = λj (1, 0), fj = gj (λ)(0, 1), j = 0, 1, . . . , n − 1}
where Tr(fj ◦ ek) = δ(j, k). Let α =∑n−1

j=0 ajλ
j ∈ GF(pn) and using equation (B.1) define

uα = (1, α) = e0 +
n−1∑
j=0

y
(0)
j (α)fj

y
(0)
j (α) =

n−1∑
k=0

(Trλj+k)ak.

(C.1)

Then for l = 1, . . . , p − 1

λluα = el +
n−1∑
j=0

y
(l)
j (α)fj

where

y
(l)
j (α) =

n−1∑
k=0

Tr(λj+l+k)ak. (C.2)
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Let us work out the details for the case p an odd prime and n = 2. We choose as our
irreducible polynomial x2 −D = 0 mod p, where D is a quadratic non-residue. The symbolic
roots of this equation are λ and (p − 1)λ. For example, if p = 3 we may take D = 2. Then
Tr[f (λ)] = f (λ) + f (2λ). It is not difficult to show g0(λ) = 2−1 and g1(λ) = (2D)−1λ.
Then

y
(0)
0 = 2a0, y

(0)
1 = y

(1)
0 = 2Da1, y

(1)
1 = 2Da0.

We now can define the index generators of the MUB by

Gα =
gr (α) = M(λruα) =

n−1⊕
j=0

u(j)
r (α), u(j)

r (α) = (δ(j, r), y(j)
r ), r = 0, 1, . . . , n − 1


Gpn =

gr (p
n) =

n−1⊕
j=0

u(j)
r (pn), u(j)

r (pn) = (0, δ(j, r)), r = 0, 1, . . . , n − 1

 .

(C.3)

We should note that gr (p
n) is not M(λr(0, 1)) but rather M(gr(λ)(0, 1)). For the example of

odd p and n = 2 we find for α = a0 + a1λ, a0, a1 ∈ GF(p),

Gα = {g0(α) = (1, 2a0) ⊕ (0, 2Da1), g1(α) = (0, 2Da1) ⊕ (1, 2Da0)}
Gp2 = {g0(p

2) = (0, 1) ⊕ (0, 0), g1(p
2) = (0, 0) ⊕ (0, 1)} (C.4)

Each generator set is characterized by two independent 4-vectors that determine a plane
containing p2 points. These planes intersect at only one point, the origin, and so the p2 + 1
sets determine p2 − 1 distinct points and, including the origin, every point of V4(p).

We note from equations (C.1) and (C.2) that y
(j)

k = y
(k)
j which ensures that the symplectic

product is preserved by the mapping. Therefore, we have for the general case

λruα ∈ V2(p
n) →

n−1⊕
j=0

u(j)
r (α) ∈ V2n(p) → Sb

gr (α) ≡
n−1⊗
j=0

Sb

u
(j)
r

(C.5)

where u
(j)
r depends on α and the bj . With this notation, the mapping from the index space to

the spin matrices is complete,

Gα → Mα =


n−1∏
r=0

S
br

gr (α) =
n−1⊗
j=0

n−1∏
r=0

S
br

u
(j)
r

, br ∈ GF(p)

 .

For the case of an odd prime p and n = 2 this result is equation (47).
The spin matrices can be further expanded with the help of equations (10) and (12), the

symmetry of the y
(j)
r (α), and a lot of algebra. First

n−1⊗
j=0

n−1∏
r=0

S
br

u
(j)
r (α)

=
n−1⊗
j=0

Sbj ,qj (α)η
�j (α,b)

qj (α, b) =
n−1∑
r=0

bry
(r)
j (α),

(C.6)

�j(α, b) =
(

2−1bj (bj − 1)y
(j)

j (α) + bj

j−1∑
r=0

bry
(r)
j (α)

)
. (C.7)
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If bj �= 0, define qj (α, b) = bjq
′
j (α, b) and we have

Sbj ,qj (α,b) = S
bj

1,q ′
j (α,b)

η−2−1bj (bj −1)q ′
j (α,b).

If bj = 0, we have

S0,qj (α,b) = S
qj (α,b)

0,1 .

After some manipulation, we can then rewrite equation (C.6) as

n−1⊗
j=0

n−1∏
r=0

S
br

u
(j)
r (α)

= η�(α,b)
⊗
bj �=0

S
bj

1,q ′
j (α,b)

⊗
bj =0

S
qj (α,b)

0,1 (C.8)

where the proper order of the tensor products is understood and where

�(α, b) = 2−1
∑

r

br

∑
j �=r

y
(r)
j (α) − 2−1

∑
bj =0

qj (α, b). (C.9)

We now can incorporate the factor � into the definition of χ as is done in equations (51) and
(65). Again leaving the ordering of the tensor products understood, equation (C.8) can be
rewritten as ∏

r

(
η−2−1∑

j �=r y
(r)
j (α)Sgr (α)

)br =
⊗
bj �=0

S
bj

1,q ′
r (α,b)

⊗
bj =0

(η−1/2S0,1)
qj . (C.10)

Therefore, we have shown that by introducing an appropriate phase factor that depends on
r and α with each Sgr (α) and by using η−2−1

S0,1 in the definition of the one-particle Wigner
function, we can define a Wigner function for all n > 1 that respects complete separability for
odd p. Note that the spin matrices appearing in the direct product are all in the standard form
Suc

where c ∈ Ip.
For the example of odd prime p and n = 2 we have for b0 and b1 not equal to zero

q0(α, b) = b02a0 + b12Da1, q1(α, b) = b02Da1 + b12Da0

�(α, b) = (b0 + b1)2Da1.
(C.11)

As stated in section 7.4 the analysis for p = 2 requires special handling. For the case of a
bipartite system, it was shown in 7.4 that we could still prove a form of separability; however,
for n > 2 we have been unable to make the method used here work.

Appendix D. Symplectic structure of the MUB

We have seen that equation (C.3) determines the index sets for the MUB. If u, v ∈ V2(p
n),

consider the transformations A : V2(p
n) → V2(p

n) that leave the symplectic product u ◦ v

invariant. This is the set of 2 × 2 matrices with entries in K = GF(pn) with unit determinant
which forms the symplectic group Sp(2,K) [5, 10, 24].

We now want to study the mapping M defined in section 6. For simplicity, we take n = 2
so that the sets of generators of the MUB on V4(p) are {g0(α), g1(α)}. Introduce the 2 × 2
matrix

σ =
(

0 −1
1 0

)
and the 4 × 4 matrix

J =
(

σ 0
0 σ

)
,
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then we can write the symplectic product in terms of an ordinary inner product, g0(α)◦g1(α) =
(g0(α), Jg1(α)). Let A → A4 where A4 is a linear transformation on V4(p), such that
A4g0(α) ◦ A4g1(α) = g0(α) ◦ g1(α). Then a matrix representation of A4 must satisfy
At

4JA4 = J, where At
4 is the transpose of A4. The set of linear transformations that

satisfy this condition forms the symplectic group Sp(4, Zp). This is analogous to the
canonical transformations for the continuous case. Under such a transformation, the classes
Cα determining the ONB of a given MUB are mapped into one another. In summary, the
symplectic group Sp(2, pn) can be mapped onto a symplectic group Sp(2n,Zp) and the
operators A2n act on the bases in a MUB in such a way as to leave the MUB invariant. For
further discussion of the symplectic group in this context see [24].

Appendix E. Phase space and finite geometry

The purpose of this section is to review the role played by the geometry of the phase space.
In section 4 we defined V2(p) to be the phase space for the discrete Wigner function when
n = 1, and lines in the vector space play an important role in relating the Wigner function
to probability measurements. By analogy, for d = pn a natural candidate for phase space
for a d-level system is a two-dimensional vector space with entries from an appropriate set of
scalars which has d elements in it; that is, we consider V2(p

n) = {(α, β) : α, β ∈ GF(pn)}.
However, in analogy with the continuous case for n each described on a Hilbert space Hp we
use V2n(p) as the phase space. The M mapping takes lines in V2(p

n) to hyperplanes in V2n(p).
If K denotes a finite field, the definition of a line in V2(k) is the obvious one. A line L in

V2(k) is a set of points in V2(K)

{(x, y) : −λy + µx + γ = 0, x, y ∈ K}.
We always omit the case in which λ = µ = 0. It is important to note the line consists of these
points and only these points. For example, in V2(3) the sets L1 = {(0, 0), (1, 1), (2, 2)}, L2 =
{(0, 0), (1, 2), (2, 1)} and L3 = {(0, 1), (1, 2), (2, 0)} are lines. Two lines intersect only if
they have a point in common, otherwise they are parallel. The lines L1 and L2 in the above
example intersect at the origin, while L1 and L3 are parallel.

V2(k) is also an example of an affine plane, a concept defined axiomatically in terms of
a finite number of points, a finite number of lines, and the relationship that a point lies on a
line. It can be shown that if a finite affine plane AP exists, then there is an m such that AP has
exactly m2 points, m2 + m lines, each line contains m points and each point is on m + 1 lines.
Two lines are said to be parallel if they have no point in common, and there are m+ 1 sets of m
parallel lines. (See [14] for a summary of these results and references.) Since no affine plane
is known for an m which is not a power of a prime, we are again restricted to dimension pn.

The image under M of lines in V2(p
n) plays a central role in the definition of a Wigner

function, and we summarize a few of their properties. Using the generalization of equation (31)
with GF(pn) replacing Zp we have

L(α, γ ) = {xuα + γ ud : x ∈ GF(pn)}
L(pn, γ ) = {yud + γ u0 : y ∈ GF(pn)}

with α, γ ∈ GF(pn). Recall that uα = (1, α), and upn = (0, 1). The vectors uα and ud

multiplying the variables x or y were introduced earlier in equation (39) as a convenience.
They now are playing the role of ‘slopes’ in an indexing of lines in V2(p

n), a much more
general setting. For each slope, as γ varies over GF(pn) we get a set of parallel lines that
contains each point in V2(p

n) once.

(1) Each line contains pn elements, and there are p2n + pn distinct lines.
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(2) The lines through the origin, L(α, 0) where α ∈ Ipn = GF(pn) ∪ {pn}, only intersect at
the origin. Furthermore,⋃

α∈Ipn

(L(α, 0) − {(0, 0)}) = V2(p
n) − {(0, 0)}.

(3) Each set of parallel lines partitions V2(p
n),

V2(p
n) =

⋃
γ∈GF(pn)

L(α, γ )

for each α ∈ Ipn .

The relevance to this paper of the affine plane is that it can be shown that for certain values
of d, such as d = 6, there is no corresponding affine plane, and for other values of d, such
as d = 12, the existence of a corresponding affine plane is an open question. (See standard
texts in combinatorics for more details or [8] for references.) We have already noted that if
K denotes a finite field, then V2(k) is an example of an affine plane, so we are working in the
most general context with the necessary structure.

The last tool we need is the symplectic product of vectors in V2(k) over the finite field K.
Specifically, recall that

(µ1, ν1) ◦ (µ2, ν2) = ν1µ2 − µ1ν2, (E.1)

where the algebra is in the field K. As an example, uα ◦ uβ = 0 if and only if α = β. For each
α �= d in Id, (λ, µ) is on the line L(α, γ ) where γ = (λ, µ) ◦ ua .

Finally, from each uα we generate n linearly independent vectors that are mapped into an
n-dimensional hyperplane in V2n(p) using equations (C.1) and(C.2).

Appendix F. Examples of the geometry

F.1. One qubit

Let K = GF(2), the Galois field consisting of the integers mod 2. The six lines of V2(2) fall
into three classes containing two parallel lines:

{L(0, 0) = {(0, 0), (1, 0)}, L(0, 1) = {(0, 1), (1, 1)}}
{L(1, 0) = {(0, 0), (1, 1)}, L(1, 1) = {(0, 1), (1, 0)}}
{L(2, 0) = {(0, 0), (0, 1)}, L(2, 1) = {(1, 0), (1, 1)}}

F.2. Two qubits

The elements of K = GF(22) can be represented as

{0, 1, λ, λ2 = λ + 1},
where 0 is the additive identity, 1 is the multiplicative identity, and 1 + 1 = λ + λ = 0. The
other relations follow in the obvious way, such as λ(λ + 1) = λ2 + λ = λ + 1 + λ = 1. The 20
lines of V2(GF(4)) fall into five classes of four parallel lines each. The class of vertical lines
is generated by L(4, 0) = {(0, 0), (0, 1), (0, λ), (0, λ + 1)}, and shifts of L(4, 0) by γ (1, 0).
The other four classes are generated by L(α, 0) = {βuα : β ∈ GF(4)} and shifts by γ (0, 1),
where L(0, γ ) corresponds to a horizontal line. Graphs of lines in V2(22) appear in both [13]
and [29].
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Appendix G. Positivity relation

We include this brief discussion in order to illustrate the difficulty in determining whether
a given phase space function corresponds to a positive operator. The method given here is
closely related to the proof given in [16]. Let {cjk} be an arbitrary set of complex coefficients
and define the matrix B = ∑

j,k cjkSj,k . Then ρ � 0 if and only if Tr(ρBB†) � 0 for all B.
Writing out the sum and using the properties of the spin matrices gives

Tr(ρBB†) =
∑

j,k,s,t

cjkc
∗
stTr(ρSj−s,k−t )η

s(t−k).

Now we can express the trace in terms of the characteristic function

Tr(ρSx,y) =
{
χ(yup) if x = 0
χ(xua) where a = x−1y, x �= 0

.

Therefore, we have, a not very illuminating, necessary and sufficient condition for χ to arise
from a positive matrix. The necessary and sufficient condition for χ to correspond to a density
matrix also requires that χ(0) = Tr ρ = 1.
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